 BMC
 	
	
	 Solutions 	 	Main Menu
	Multi-Cloud Management
	Accelerate Multi-Cloud Adoption
	Gain Asset Visibility
	Manage Performance in the Cloud
	Automate Across Clouds
	Manage Services Across Clouds

 	Automation & DevOps
	Automate Application Workflows
	Automate File Transfers
	Automate Application Deployment
	Automate Your Data Center
	Automate Database Changes
	Mainframe Enterprise DevOps
	Modern Developer Experience

	 	Security & Compliance
	Build a SecOps Strategy
	Remediate Vulnerabilities
	Secure Your Mainframe

 	Observability and AIOps
	Provide Continuous Service Assurance
	Deliver End-to-End ITOM
	Optimize Your Mainframe Costs
	Achieve Peak Database Performance

 	Service Management Excellence
	360o Customer Service Management
	Transform HR Service Management
	Deliver Modern, Intelligent ITSM
	See All Your IT Assets
	Enable a Digital Workplace

	 	AI & Machine Learning
	Lead ServiceOps Transformation
	Apply Artificial Intelligence to IT (AIOps)
	Gain Big Data Insights
	Accelerate With a Self-Managing Mainframe

 	Solutions by Industry
	Communication Service Providers
	Financial Services
	Healthcare
	Manufacturing
	Public Sector
	Retail

	

	

 	 Products
	Main Menu

 Featured Products

	 	BMC Helix SaaS Solutions
	BMC Helix Service Management
	BMC Helix ITSM
	BMC Helix Business Workflows
	BMC Helix Digital Workplace
	BMC Helix Virtual Agent
	BMC Helix Operations Management
	BMC Helix Platform
	BMC Helix Discovery
	BMC Helix Continuous Optimization
	 BMC Helix Control-M

	 	Control-M Application Workflow Orchestration
	Jobs-as-Code (DevOps)
	Control-M and Managed File Transfer
	Control-M and Workload Automation

	 	 Automated Mainframe Intelligence (BMC AMI)
	BMC AMI Data
	BMC AMI Ops
	BMC AMI Security
	BMC AMI DevX

View All BMC Products

 	 Partners 	 	Partners
	Locate a Partner
	Become a BMC Partner
	Partner Resources
	Global Partnerships

	 	Developers
	Developer Community
	BMC Helix Platform
	Jobs-as-Code with Control-M

	 	Integrations & Connectors
	BMC Helix
	Control-M
	BMC Helix Control-M
	Mainframe

	 Support & Services 	 	 Main Menu
	Education & Certification
	BMC Academy Login (iLearn)
	Search for Courses
	Learning Paths
	IT Certifications

	 	Services & Consulting
	Success Subscriptions
	Strategic Services
	Mainframe Services
	Deployment Services
	Managed Services

	 	Support
	Customer Support Offerings
	Downloads
	Documentation
	Support by Product Name
	Knowledge Base
	Case and Defect Management
	Ask the Community
	Supported Products (A-Z)

Support Central

 	 About BMC 	 	Main Menu
	BMC’s Approach to IT
	Autonomous Digital Enterprise
	Transcendent Customer Experience
	Automation Everywhere
	Enterprise DevOps
	Data-Driven Business
	Adaptive Cybersecurity

	 	Why Choose BMC ?
	About BMC
	Leadership Team
	Customer Stories
	Corporate Social Responsibility
	Customer Engagement Program
	Voice of the Customer Program
	BMC Innovation Labs

	 	Corporate
	Contact BMC
	Careers
	BMC Community
	BMC Blogs
	Newsroom

 	 Free Trials & Demos|
	 Get Pricing|
	 Contact BMC

 Search

 Search Result
 View all results
 Popular Searches
 Helix Remedy Control-M TrueSight CMDB Client Management Discovery ITIL Track-It! FootPrints Careers

 	BMC Software

	AIOps
	BMC Beat
	Cloud
	DevOps
	Innovation
	ITSM
	Mainframe
	Workload Automation
	More 	Big Data
	The Business of IT
	IT Operations
	Security
	Industry Topics
	BMC Bloggers List
	BMC Guides
	Blogs Sitemap

		

 Machine Learning & Big Data Blog MongoDB Sorting: sort() Method & Examples

 November 26, 2020 6 minute read
 Shanika Wickramasinghe

 In this article, I’ll show you how to use the MongoDB sort() method in various scenarios, including how to use it alongside other methods to sort a given data set.
 Using the sort() method will increase the readability of a query, which leads to a better understanding of a given dataset. Not only that, sorted data will be used by developers to write more complex algorithms.
 (This article is part of our MongoDB Guide. Use the right-hand menu to navigate.)
 What is database sorting?
 Database sorting presents data in an ascending or descending order with relation to the data in a specified field. You can carry out sorting operations on various data types such as:
 	Strings
	Integers
	Decimal
	Etc.

 The main advantage of sorting is that it increases the readability and uniformity of the data, which helps the users grasp the meaning of the data set more effectively.
 MongoDB sort()
 In MongoDB, sorting is done by the sort() method. The sort() method consists of two basic building blocks. These building blocks are fields to be sorted and the sort order.
 The sorting order in MongoDB is defined by either a one (1) or a minus (-1). Here the positive one represents the ascending order, while the negative one represents the descending order.
 Basic syntax of MongoDB sort()

db.collection_name.find().sort({field_name: sort order})

According to the official documentation, MongoDB uses the following order when comparing values of different BSON types from lowest to highest. (BSON stands for Binary JSON format.)
 This is the serialization format used in MongoDB to store documents and make remote procedure calls. Any non-existent fields in a document are treated as Null objects.
 	MinKey (internal type)
	Null
	Numbers (ints, longs, doubles, decimals)
	Symbol, String
	Object
	Array
	BinData
	ObjectId
	Boolean
	Date
	Timestamp
	Regular Expression
	MaxKey (internal type)

 The following examples will demonstrate the differences between an unsorted and a sorted MongoDB search query. For this example, we will be using the “vehicleinformation” collection.
 “vehicleinformation” collection data

 Unsorted collection
 When a search query is carried out with the find() method, the default behavior is to return the output unsorted. The {_id:0} operator is used to remove the document ID for a simpler output.

db.vehicleinformation.find({},{_id:0})

Results in:

 Sorted collection
 To get a sorted result, we append the sort() method to the end of the search query (find() method). This allows the user to generate a sorted output.
 In this instance, the data is sorted by the “year” field in ascending order.

db.vehicleinformation.find({},{_id:0}).sort({"year":1})

Results in:

 If you don’t give any arguments to the sort() method, the collection will not be sorted, and the resulting output will be in the default order—which is the order Mongo finds the results.

db.vehicleinformation.find({},{_id:0}).sort({})<.pre>

Result:

 MongoDB sort() method usage
 This section will cover how the sort() method can be used to carry out different sorting operations. Jump to the Sorting option you need:
 	In ascending order
	In descending order
	With multiple fields
	With the limit() method
	With the skip() method
	Metadata
	With an index

 Sorting in ascending order
 In this example, I use the “make” text field to obtain the results in ascending order. The operator one ({“make”:1}) is used to indicate the ascending order, and MongoDB projection is used to filter out all the other fields except the “make” field.

db.vehicleinformation.find({},{make:1,_id:0}).sort({"make":1})

Result:

 Sorting in descending order
 This example is the same as the above with one difference, which is using minus one ({“make”:-1}) operator to indicate the descending order.

db.vehicleinformation.find({},{make:1,_id:0}).sort({"make":-1})

Result:

 Sorting using multiple fields
 When sorting multiple fields, you should declare fields to be sorted within the sort() method. The query will be sorted according to the declaration position of the fields, where the sort order is evaluated from left to right. To demonstrate this, we will be using “vehiclesales” collection.
 “vehiclessales” collection

db.vehiclesales.find({},{_id:0})

Result:

 The following example will show how to sort using the “make” and “price” fields. The data is first sorted by “make” as it’s the first argument, and then the data set will be further sorted by the “price” field.

db.vehiclesales.find({},{_id:0}).sort({"make":1,"price":1})

Result:

 As shown above, the data is first sorted by the make field. As there are multiple documents with the same make “Audi,” the data gets sorted again by the price field in an ascending order resulting in the above output.
 Sorting with the limit() method
 The sort() method can be used along with the limit() method that limits the number of results in the search query. You should pass an integer to the limit() method, which then specifies the number of documents to which the result set should be limited.
 The following examples use the “vehicleinformation” collection while the result is limited to two documents and sorted by both the ascending and descending order.

db.vehicleinformation.find({},{_id:0}).sort({"make":1,"year":1}).limit(2).pretty()

Result:

db.vehicleinformation.find({},{_id:0}).sort({"make":-1,"year":-1}).limit(2).pretty()

Results in:

 Sorting with the skip() method
 You can also use the skip() method with the sort() method. The skip() method allows the user to skip a specified number of documents from the resulting dataset.
 In the following example, You can see the first four documents are being skipped while being sorted by the year in ascending order.

db.vehicleinformation.find({},{_id:0}).sort({"year":1}).skip(4).pretty()

Result:

 Metadata sorting
 The sort() method can be used to sort the metadata values for a calculated metadata field.
 The following example used the “food” collection to demonstrate how documents can be sorted using the metadata “textScore.” The field name in the sort() method can be arbitrary as the query system ignores the field name.
 “Food” collection

db.food.find({},{_id:0})

Result:

db.food.find({$text:{$search: "pizza"}}, {score:{$meta: "textScore"}, _id: 0}).sort({sort_example:{$meta: "textScore"}})

Result:

 In this query, we have specified the sort field as “sort_example.” However, this is ignored as we are sorting metadata. Moreover, since we are sorting using “textScore” metadata, the resulting data set is sorted in descending order.
 Sorting with an index
 MongoDB can perform sort operations on a single-field index in ascending or descending order. In compound indexes, the sort order determines whether the index can be sorted. The sort keys must be listed in the same order as defined in the index.
 For example, the compound index {make: 1, year: 1} can be sorted using “sort({make: 1, year: 1})” but not on “sort({year: 1, make: 1})”. Sorting using an index helps to reduce the resource requirements when performing the query.
 Using the “vehicleslaes ” collection, we define an index named “make_index”

db.vehiclesales.find({},{_id:0}).sort({make_index: 1})

Result:

 Here, the index “make_index” is used to sort the documents. To identify which index is used, we append the explain() method to the end of the query, which will result in the following output. From the output, we can identify that the “make_index” is used to fetch the relevant documents.

db.vehiclesales.find({},{_id:0}).sort({make: 1}).explain()

Result:

 Finally, the query is run without the explain() method to obtain the output.

db.vehiclesales.find({},{_id:0}).sort({make: 1})

Result:

 That’s the end of our MongoDB sorting tutorial. Explore the right-hand menu for more MongoDB concepts and examples.
 Related reading
 	BMC Machine Learning & Big Data Blog
	MongoDB Guide, a series of articles and tutorials
	MongoDB: The Mongo Shell & Basic Commands
	Data Storage Explained: Data Lake vs Warehouse vs Database

 Free e-book: The Beginner’s Guide to MongoDB
 MongoDB is the most popular NoSQL database today and with good reason. This e-book is a general overview of MongoDB, providing a basic understanding of the database.
 Download e-book ›

 Download e-book ›

 These postings are my own and do not necessarily represent BMC's position, strategies, or opinion.
 See an error or have a suggestion? Please let us know by emailing blogs@bmc.com.
 MongoDB

 	
	
	

 BMC Brings the A-Game
 BMC works with 86% of the Forbes Global 50 and customers and partners around the world to create their future. With our history of innovation, industry-leading automation, operations, and service management solutions, combined with unmatched flexibility, we help organizations free up time and space to become an Autonomous Digital Enterprise that conquers the opportunities ahead.
 Learn more about BMC ›

 You may also like

 MySQL vs MongoDB: Comparing Databases

 AWS Linear Learner: Using Amazon SageMaker for Logistic Regression

 Top Machine Learning Algorithms & How To Get Started

 Using Tableau to Track Coronavirus

 Taking Steps to Unify Data for Maximum Value

 Tableau: Getting Started with Real Examples

 About the author

 Shanika Wickramasinghe
 Shanika Wickramasinghe is a software engineer by profession and a graduate in Information Technology. Her specialties are Web and Mobile Development. Shanika considers writing the best medium to learn and share her knowledge. She is passionate about everything she does, loves to travel, and enjoys nature whenever she takes a break from her busy work schedule. You can connect with her on LinkedIn.

 View all posts

 MongoDB Guide

 	MongoDB Overview: Getting Started with MongoDB
	How to Install MongoDB on Ubuntu and Mac
	Creating a Database in MongoDB
	MongoDB: The Mongo Shell & Basic Commands
	MongoDB Compass: Using the Mongo GUI
	MongoDB Role-Based Access Control (RBAC) Explained
	MongoDB Projection & Projection Operators Explained
	MongoDB Aggregate Functions Explained
	MongoDB Sorting: sort() Method & Examples
	Using Push & Pull Operators in MongoDB
	How To Use MongoDB $unwind
	23 Common MongoDB Operators & How To Use Them
	MongoDB GeoLocation Query Examples
	Introduction to MongoDB Transactions
	MongoDB Indexes: Creating, Finding & Dropping Top Index Types
	Top MongoDB Commands You Need to Know
	MongoDB Replication: A Complete Introduction
	How to Setup a MongoDB Cluster
	MongoDB Sharding: Concepts, Examples & Tutorials
	MongoDB Atlas: Setting Up & Using Managed MongoDB
	How To Run MongoDB as a Docker Container
	MongoDB Memory Usage, Management, & Requirements
	How To Use mongodump for MongoDB Backups
	Using mongorestore for Restoring MongoDB Backups
	How To Use PyMongo
	How to Use Mongoose for MongoDB & NodeJS
	MongoDB Cheat Sheet
	MongoDB vs Cassandra: NoSQL Databases Compared
	PostgreSQL vs MongoDB: Comparing Databases
	MySQL vs MongoDB: Comparing Databases
	MongoDB Certifications: An Introduction

 Free e-book: The Beginner’s Guide to MongoDB

 Download e-book ›

 	Contact
	Free Trials
	Legal
	Privacy Policy
	Update my preferences
	Trust Center

 ©Copyright 2005-2024 BMC Software, Inc. Use of this site signifies your acceptance of BMC’s Terms of Use. BMC, the BMC logo, and other BMC marks are assets of BMC Software, Inc. These trademarks are registered and may be registered in the U.S. and in other countries.

