
MongoDB Workloads
with Control-M
Seamlessly embed MongoDB queries and operations
into business workflows

INTRODUCTION

MongoDB Meets Application Workflow Orchestration
MongoDB describes itself as “the most popular database for modern apps”
so chances are high that you probably have tons of “modern” data sources
like your company’s websites, social media accounts, inventory records, sales
transactions, IoT devices, etc. And if you are like most enterprises, it’s an ever-
growing list that includes lots of traditional data sources too. You probably also
have an arsenal of tools to help you ingest, extract, transform, process, and
report on all this data.

A major challenge today is how to take all these data sources and data
management tools and build an automated data pipeline. That’s the job of
sophisticated and powerful application workflow orchestration.

In this technical note, we’ll demonstrate how you can quickly connect MongoDB,
a leading document database solution, with Control-M, a powerful application
workflow orchestration product. The result, you get enterprise-grade operational
control over your data – from end-to-end workflow visibility to logs and output
capture and management. Control-M can help you weave MongoDB (and all
your other key technologies) into your entire data pipeline, in the cloud, on-
premises, or both.

Automated MongoDB operations using the best practices established for
the organization
•	 Immediately leverage their SQL expertise for MongoDB

•	 Manage MongoDB operations within the context of a complete business
service

These goals are achieved by accessing MongoDB via the JDBC programming
interface as implemented by a JDBC-compliant driver.

This document describes one such implementation, describing the steps
required to achieve this integration.

TECH NOTE

SOLUTION COMPONENTS

Control-M for Databases
Control-M for Databases is an application plug-in that
enables you to do the following:
•	 Connect to any supported database from a single

computer with secure login

•	 Define and monitor Stored Procedure, SQL Script,
SQL Server Integration Services (SSIS) Package, and
Embedded Query database jobs

•	 Integrate Database jobs with other Control M jobs into
a holistic business application workflow

•	 Introduce all Control-M capabilities to database
processing, including advanced scheduling criteria,
complex dependencies, quantitative and control
resources, and variables

MongoDB
MongoDB is a document database designed for ease of
development with the desired scalability and flexibility and
the required querying and indexing.

Unity JDBC Driver
UnityJDBC provides simple data virtualization through
support of any Java query and reporting software to
combine data from multiple databases without requiring
any new systems or server modifications.

Audience
This document is intended for anyone familiar with use
of Control-M and has general knowledge of MongoDB.
There is no attempt to provide in-depth guidance for these
topics.

Additional information about the information presented
here can be found in the links below:

General Control-M Documentation

Control-M Automation API

UnityJDBC Driver

MongoDB

TECH NOTE

DEFINE MONGODB TO CONTROL-M

This implementation uses the Unity JDBC driver although
others are available. This is a common choice made by
customers who have implemented this solution.

A free download and trial is available. If you decide to use this
product, there will likely be some minimal additional charges.
You can download the driver from:

http://unityjdbc.com/download.php

The downloaded jar file is an installation package. It is not a
JDBC driver. Check with Unity for any updates however at
the time this document was written, the installation process
required java 1.8 or above and consisted of running the
downloaded jar file like this:

This starts a graphical installation dialog which lets you select
the target location.
The default path on a Windows machine is
C:\Program Files\UnityJDBC\
In this directory, find jar file “Unityjdbc.jar”
In the “drivers\Mongo\” directory, find file “mongo-java-
driver-3.0.3.jar”.

Copy these two files:
•	 mongo-java-driver-3.0.3.jar

•	 Unityjdbc.jar

to a folder of your choosing, that is accessible to Control-M
for Databases. This new folder will be specified as the “Path
to Driver Folder” in section “Define Mongo Database Type”.
Note: these files can be used on Windows or Linux.

MongoDB
This document assumes that a MongoDB instance is
available. The only requirement for Control-M is an
operational database instance with a username and password
that can be used to connect to and operate on databases
and collections.

The assumed configuration in this document is that the
MongoDB port is 27017 and connection from other hosts
is enabled (for example by coding Bind = 0.0.0.0 in the
mongodb.conf configuration file).

java -jar UnityJDBC_Trial_Install.jar

https://docs.bmc.com/docs/ctm/control-m-workload-automation-documentation-471556599.html
https://docs.bmc.com/docs/display/workloadautomation/Control-M+Automation+API+-+Getting+Started+Guide
http://unityjdbc.com/mongojdbc/mongo_jdbc.php
https://docs.mongodb.com/
http://unityjdbc.com/download.php

Define Mongo Database Type
Control-M for Databases provides out-of-the-box support
for Oracle, MS SQL Server, DB2, Sybase and PostgreSQL.
Any other database can also be supported via a JDBC driver.
Once you have the driver, a simple configuraiton defines
the database to Control-M and all further activities are then
available for the newly-defined database just like for natively
supported ones.

The definition can be performed either via graphical tools
or via a code-like approach using JSON and Automation
API.

Use Control-M Configuration Manager (CCM)
The CCM is the Control-M administrative console for
managing your environment.

To define a Mongo database, navigate to the agent where
Control-M for Databases is installed, right-click on that
branch and select “Connection Profile Management” as
shown in the image below:

TECH NOTE

Click the icon on the right to open the Database Types
Manager.

Select the “+” to add a new Database Type on the Database
Types Manager form below:

TECH NOTE

Press OK to save the definition and Close to close the
Database Types Manager.

This brings you back to the Connection Profile Management
form where you select “+”, to define a new connection

profile in a form similar to the image below:

Connection Profile Name: A logical name for this profile
that will be logical to users, like “MongoTest” or
:”MongoProd”

This action opens the Edit dialogue below.

Database name: A logical name this database type should
be referred to, such as Mongo or Snowflake, etc.

Connection String: This is a TEMPLATE for the
connection string. It is used by Control-M to formulate
the specific connection string based on information
in the Connection Profile (see below). This approach
enables a single Database Type definition to be used to
connect to multiple databases.

<HOST> replaced by the hostname or IP Address
specified in the connection profile

<PORT> replaced by the hostname or IP Address
specified in the connection profile

<DATABASE> replaced by the database name
specified in the connection profile

Path to Driver Folder:	The fully-qualified path to the
folder which contains the JDBC driver jar files (see
”Prepapre UnityJDBC Driver”)

Line Comment	comments within SQL queries are prefixed
by this character, for example:

	 -- This is a comment

	 select * from inventory;

Statement Separator	 statements must be terminated by
this character, for example:

	 select * from inventory;

TECH NOTE

APIs or the “ctm” cli which implements those same REST
services.
Create a json file. In this example, it is named Mongo_
DbDef.json
This is the file:
{
 MongoDB”: {
 “Type”: “Driver:Jdbc:Database”,
 “TargetAgent”:”controlm”,
 “StringTemplate”:”jdbc:mongo://<HOST>:<PORT>/<DATABASE>”,
 “DriverJarsFolder”:”C:\\Mongo4CTM\\”,
 “ClassName”:”mongodb.jdbc.MongoDriver”,
 “LineComment” : “--”,
 “StatementSeparator” : “;”
 }

MongoDB is the Database name.
Type:	 Json syntax for this definition type.
TargetAgent: the Control-M Agent where this definition is

to be deployed

StringTemplate: the Connection String Template
described above.

DriverJarsFolder: location where the Unity JDBC jar files
were placed

ClassName: the JDBC class name provided by the JDBC
driver documentation

Line Comment: as described above.

StatementSeparator: as described above.

Validate the syntax of your json file using the Automation
API “build” function:

You should get a response similar to:
[
 {
 “deploymentFile”: “Mongo_DbDef.json”,
 “successfulFoldersCount”: 0,
 “successfulSmartFoldersCount”: 0,
 “successfulSubFoldersCount”: 0,
 “successfulJobsCount”: 0,
 “successfulConnectionProfilesCount”: 0,
 “successfulDriversCount”: 1,
 “isDeployDescriptorValid”: false
 }
]

Database Type: the name used for the Database Type
definition in the previous set of steps, like “Mongo”

Database Version: choose “Any”

Choose “Next” to go on to the next form:

Host Name:	 The hostname of the machine on which
MongoDB is running.
Port Number:	 The Port defined in mongodb.conf for
connections to Mongo.

The default is 27017.
Database Name:	The nae of the database you wish and are
authorized to connect to.
User Name:	 the user name defined in MongoDB
authorized to use this database.
Password:	 the password for the above user.
Confirm Password:	 repeat the password for
confirmation.
Select “Next” to page through the remaining forms.
The values are the same as any other database (see
documentation or press F1).
Press Finish to complete and save the Connection Profile.

Use Automation API
This is an alternative method using JSON and either REST

ctm build Mongo_DbDef.json

TECH NOTE

Select the Databases job type.

Connection Profile: Choose a profile created in the
previous section (“Define Mongo Database Type”)
Execution Type: Choose the SQL query you wish to
execute. It can be embedded, as above, or a script stored in
a file.
Expand the “More” section (highlighted by the arrow)
to choose the type of output you wish to capture in the
Control-M output.

Once the syntax is correct, use the “deploy” service to
create the entry. The following is using the “ctm” cli:

The response should be similar to this:
[
 {
 “deploymentFile”: “Mongo_DbDef.json”,
 “successfulFoldersCount”: 0,
 “successfulSmartFoldersCount”: 0,
 “successfulSubFoldersCount”: 0,
 “successfulJobsCount”: 0,
 “successfulConnectionProfilesCount”: 0,
 “successfulDriversCount”: 1,
 “isDeployDescriptorValid”: false,
 “deployedDrivers”: [
 “MongoDB_API”
]
 }
]

BUILD AND EXECUTE JOBS

The goal of the integration described in this document is to
execute Control-M jobs that perform MongoDB tasks.

Graphical Clients
This example uses the Workload Automation client.
Control-M/Web Planning can also be used.

ctm deploy Mongo_DbDef.json

TECH NOTE

Job:Database:SQLScript this job executes a SQL script
rather than an in-line embedded query.

By coding “OutputExcecutionLog”: “N”
and OutputSQLOutput” : “Y” 	 only the SQL
output is written to Control-M output. Then adding
“Output”: {“Destination”: “/home/ctmagent/ mongo_
output_%%ORDERID._%%$DATE._%%TIME..xml”,
“Operation”: “Copy”}, the SQL output is copied ot the
output destination and given a file name made unique by
Control-M variables containing the current date and time.

Check the JSON syntax with the Automation API “build”
service via the ctm cli:

Successful response appears similar to:
[
 {
 “deploymentFile”: “mongodb_sql.json”,
 “successfulFoldersCount”: 0,
 “successfulSmartFoldersCount”: 1,
 “successfulSubFoldersCount”: 0,
 “successfulJobsCount”: 1,
 “successfulConnectionProfilesCount”: 0,
 “successfulDriversCount”: 0,
 “isDeployDescriptorValid”: false
 }
]
You can then execute the job using the “run service or via
the cli as follows:

See documentation for how to monitor job execution
status, retrieve the log or output and perform other
operations like rerunning the job.

Automation API
Sample JSON to use the connection profile built in the
previous sections:
{
 “JGO_MongoDB” :
 { “Type” : “Folder”,
	 “SiteStandard” : “JGO_Std”,
	 “ControlmServer” : “controlm”,
	 “OrderMethod” : “Manual”,
 “JGO_Mongo_SQL_Job001” :
	 { “Type” : “Job:Database:SQLScript”,
		 “OutputExcecutionLog”: “N”,
		 “OutputSQLOutput” : “Y”,
		 “SQLOutputFormat” : “XML”,
		 “SQLScript” : “/home/ctmagent/script.sql”,
		 “ConnectionProfile” : “MONGOCP”,
		 “Host” : “ip-172-31-51-209”,
		 “SubApplication” : “MongoDB”,
		 “Application” : “JGO”,
		 “Description” : “MongoDB SQL Query”,
		 “RunAs” : “joeuser”,
		 “Output”: {
 “Destination”: “/home/ctmagent/ mongo_
output_%%ORDERID._%%$DATE._%%TIME..xml”,
 “Operation”: “Copy”
		 }
 }
 }
}

ctm build mongodb_sql.json

ctm run mongodb_sql.json

*521303*BMC, BMC Software, the BMC logo, and the BMC Software logo, and all other BMC Software product and service names are owned by
BMC Software, Inc. and are registered or pending registration in the US Patent and Trademark Office or in the trademark offices of other
countries. All other trademarks belong to their respective companies. © Copyright 2020 BMC Software, Inc.

TECH NOTE

SIMPLIFY AND SCALE COMPLEX DATA PIPELINES

With the above steps, you have successfully connected MongoDB with the power of application workflow orchestration.
But, don’t stop there; Control-M can automate your entire data pipeline, allowing you to ingest and process data from all
kinds of platforms, including Hadoop, Spark, EMR, RedShift and others. Just check out the figure below to see what it
looks like.

CONCLUSION

MongoDB has gained popularity and is now a common component of many applications. The ability to execute queries
within the workflow of a business application, provides enhanced visibility and manageability for such tasks. Furthermore,
MongoDB process lineage can be captured to enhance auditing and simplify governance.With Control-M you will spend
more time uncovering actionable intelligence, and less time worrying about access to data. Control-M gives you an end-to-
end view of data pipelines at every stage from data ingestion to processing to analytics. You’ll be able to manage business
SLAs for service delivery and resolve critical issues before deadlines are missed.

Provision
Control-M
Agent

Transfer
data to Hadoop
cluster

Transfer
data out
of Hadoop

Predict
Notify
Analyze
Archive

Terminate
Hadoop
Cluster

Process
Data

Provision
Hadoop cluster
on cloud

Visit our web page

FOR ADDITIONAL INFORMATION ON CONTROL-M

http://www.bmc.com/legal/trademarks-third-party-attributions.html
https://www.bmc.com/it-solutions/control-m.html?vu=control-m

